Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract “Jumbo phages” are tailed phages with genome sizes >200 kbp and physical dimensions reaching up to 0.45 μm. Although jumbo phages represent only a small fraction of the isolated phages to date, metagenomic surveys have shown that they are broadly distributed in a wide range of environments. In this study, we surveyed metagenomic data from aquatic systems and identified 25 genomes from a heretofore-undescribed lineage of jumbo phages with genomes reaching up to 307 kbp. We refer to these phages as “moraphages”, from the Gaelic word ‘mór’, for large. Moraphages represent a diverse lineage with inter-genome average amino acid identity (AAI) ranging from 39 to 95%, and our pan-genomic analysis identified only 26 viral orthologous groups (VOGs) found in at least 80% of the genomes. Our phylogenomic analysis suggests that moraphages are distant relatives of a recently described lineage of huge phages from marine sediment. Moraphages lack much of the genetic machinery found in other lineages of large phages, but they have a range of genes that may be used to take over host cellular machinery and subvert host defenses, such as glutamine synthetases, antitoxin genes, and chaperones. The predicted hosts of most moraphages are members of the phylumBacteroidota, and some encode homologs of the chaperones DnaK and DnaJ that bear evidence of recent gene transfer from members of the orderFlavobacteriales. Our work sheds light on the emerging diversity of large phages that are found across the biosphere.more » « less
-
Phytochromes are red-light photoreceptors first identified in plants, with homologs found in bacteria and fungi, that regulate a variety of critical physiological processes. They undergo a reversible photocycle between two distinct states: a red-light-absorbing Pr form and a far-red light-absorbing Pfr form. This Pr/Pfr photoconversion controls the activity of a C-terminal enzymatic domain, typically a histidine kinase (HK). However, the molecular mechanisms underlying light-induced regulation of HK activity in bacteria remain poorly understood, as only a few structures of unmodified bacterial phytochromes with HK activity are known. Recently, cryo-EM structures of a wild-type bacterial phytochrome with HK activity are solved that reveal homodimers in both the Pr and Pfr states, as well as a heterodimer with individual monomers in distinct Pr and Pfr states. Cryo-EM structures of a truncated version of the same phytochrome—lacking the HK domain—also show a homodimer in the Pfr state and a Pr/Pfr heterodimer. Here, we describe in detail how structural information is obtained from cryo-EM data on a full-length intact bacteriophytochrome, and how the cryo-EM structure can contribute to the understanding of the function of the phytochrome. In addition, we compare the cryo-EM structure to an unusual x-ray structure that is obtained from a fragmented full-length phytochrome crystallized in the Pr-state.more » « less
-
Phytochromes are red-light photoreceptors discovered in plants with homologs in bacteria and fungi that regulate a variety of physiological responses. They display a reversible photocycle between two distinct states: a red-light–absorbing Pr state and a far-red light–absorbing Pfr state. The photoconversion regulates the activity of an enzymatic domain, usually a histidine kinase (HK). The molecular mechanism that explains how light controls the HK activity is not understood because structures of unmodified bacterial phytochromes with HK activity are missing. Here, we report three cryo–electron microscopy structures of a wild-type bacterial phytochrome with HK activity determined as Pr and Pfr homodimers and as a Pr/Pfr heterodimer with individual subunits in distinct states. We propose that the Pr/Pfr heterodimer is a physiologically relevant signal transduction intermediate. Our results offer insight into the molecular mechanism that controls the enzymatic activity of the HK as part of a bacterial two-component system that perceives and transduces light signals.more » « less
An official website of the United States government
